

## Voir la dynamique des interfaces en matière molle aux échelles nanométriques

Jean Comtet

**Prix Branly 2021** 

## A (short) journey through soft matter (2013-2022)



with C. Creton, A. Radenovic, L. Bocquet, A. Siria, A.E. Hosoi, J. Bush

## Ion dynamics at solid/liquid interfaces



Deitmer et al. Journal of Biological Chemistry (2008)



Energy storage

Salanne et al. Nature Energy (2016)



#### Membrane science and nanofluidics

Radenovic et al. Bocquet et al.

#### Proton dynamics at interfaces

T = 180 K P = 10<sup>-7</sup> mbar *Room Temperature Liquid Environment* 

#### Single Proton transport



 $\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 

Scanning Tuneling Microscopy Besenbacher et al. Science (2012) Proton-sensitive dyes Second Harmonic Generation Pohl et al. PNAS (2011)

Can we directly see single proton charge transport at solid/liquid interfaces?

#### **Ensemble Averaged proton transport**

## Defects in hexagonal Boron Nitride (hBN)



hBN can host fluorescent defects

Exfoliation + O<sub>2</sub> plasma treatment



Ionic layered crystal



Wide band-gap insulator



#### Aharonovich, Nature Nanotechnology, 2015 5

## Super-resolution of optically active defects in hBN





Comtet, Radenovic et al. *Nano letters* (2019) K Xu et al. Nature Methods (2015)



#### Super-Resolved Image in water





**Diffraction-limited** 





2 µm

## Super-Resolved Image in water



# Another illustration of Super Resolution principle



#### credit: Ricardo Henriques

#### Defect reactivity in water



Sample in air

Sample in water (pH 3)

#### Defect reactivity in water

Wide-field image

Super-resolved image



pH 10

pH 3

#### Emission due to protonated boron vacancy



—> Emission is due to a defect in its protonated form (here boron vacancy)

Collaboration with theoretical chemists at ENS B Grosjean, ML Bocquet, R Vuilleumier

+DFT calculations *Van de Walle, PRB, 2018* 

#### Ab-initio simulations



### Tracking proton trajectories using defects









#### **Diffusive behavior**



#### **Beyond Mean-Field behavior**



#### **Desorption-limited transport**



## Surface affinity of protons



Free energy barrier preventing proton desorption from the interface



Defect #2

#### Amphiphilic behavior at interfaces

Kudin, K. N., & Car, R. (2008). JACS 130(12), 3915-3919.



#### Towards more complex solvents



Dynamics in water/ethanol mixture

## Perspective t=0 ms 200 nm **Platform to study** interfacial dynamics at solid/liquid interfaces at the single charge and single-molecule scale t= 600 ms

Acknowledgment

A. Radenovic (EPFL), C. Creton (ESPCI), L. Bocquet and A. Siria (ENS Paris)

Nano letters (2019) Nature Nanotechnology (2020) Science Advances (2021)